Библиотека >> Физика
Скачать 150.44 Кбайт Физика
А что ему необходимо остановиться, в
этом убеждает не только свидетельство чувств, но и рассуждение. Начало [этого рассуждения] таково. Так как существуют три [точки]: начало, середина и конец, середина по отношению к каждому [из отрезков] будет и тем и другим, [т. е. началом и концом] и, будучи по числу единой, по определению будет двумя. Далее, одно дело -- существовать в возможности, другое -- в деятельности; так что любая точка, лежащая на прямой между ее концами, в возможности есть середина, в деятельности же не будет ею, пока не разделит прямую и остановившееся на ней [тело] снова начнет двигаться. Таким образом середина становится началом и концом; началом для последующего [движения], концом для первого. Пусть, например, перемещающееся [тело] А останавливается в В и снова движется к Г. Когда оно движется непрерывно, А не может ни находиться в [точке] В, ни отправляться из нее, а может быть в ней лишь один момент "теперь" -- не в течение какого-нибудь времени, а лишь поскольку "теперь" делит целое [время]. Если же предположить, что оно прибыло и ушло, [то это будет означать, что] движущееся А всегда будет стоять, так как невозможно, чтобы А одновременно прибыло в В и ушло оттуда; следовательно, это происходит в разные моменты времени. Следовательно, в промежутке будет какое-то время. Таким образом, [тело] А будет покоиться в [точке] В. То же относится и к другим точкам, так как подобное рассуждение приложимо ко всем [точкам]. Когда же движущееся [тело] А пользуется средней [точкой] В как концом и началом, ему необходимо остановиться, потому что оно делает [из одной точки] две, так же как это делает мышление. Но оно отправилось из точки А, как из начала, и оказалось в Г, когда закончило [движение] и остановилось. То же надо сказать и по поводу трудности, которая заключается в следующем. Если линия Е будет равна линии Z и А будет двигаться непрерывно от крайней точки по направлению к Г и одновременно, когда А будет находиться в [точке] В, Д будет равномерно двигаться от крайней точки линии Z к точке Н со скоростью, равной скорости А, то Д, [по-видимому], раньше придет, в Н, чем А в Г, так как прежде двинувшееся и отошедшее должно прийти раньше. Таким образом, не одновременно А пришло в [точку] В и отошло от нее, потому и запаздывает. Ведь если бы это [произошло] одновременно, оно не запоздало бы, но [телу] А необходимо остановиться. Следовательно, нельзя так рассматривать вопрос, что, когда А пришло в [точку] В, Д одновременно совершало движение от края Z (ибо, если А пришло в В, оно и удалилось оттуда, а это [происходит] не одновременно); между тем оно было [в В] не в течение какого-то времени, а в точке разреза времени. Отсюда следует, что о непрерывном [движении] таким образом рассуждать нельзя; наоборот, о [движении], возвращающемся назад, необходимо рассуждать именно так. Ибо если тело Н перемещалось по направлению к Д, а затем, повернув назад, пошло вниз, то оно воспользовалось конечной точкой Д как концом и началом, т. е. одной точкой как двумя; поэтому ему пришлось остановиться. И не в одно и то же время [тело Н] пришло в Д и отошло от Д, иначе в одно и то же "теперь" оно там было и не было. Но указанного выше разрешения трудности здесь не следует применять, так как нельзя сказать, что Н находилось в Д как в точке разреза и, [следовательно], не приходило и не уходило: ведь [здесь] необходимо дойти до конца, существующего в действительности, а не только в возможности. Точка в середине [отрезка] существует в возможности, а эта [точка Д] в действительности, и она есть конец снизу и начало сверху; то же относится и к движению. Следовательно, необходимо, чтобы при поворачивании назад по прямой линии [тело] остановилось. Таким образом, непрерывное движение по прямой не может быть вечным. Таким же способом следует возразить тем, которые выдвигают рассуждение Зенона и полагают, что если всегда сначала надо пройти половину, а число половин бесконечно, то бесконечного пройти нельзя; или тем, которые формулируют это же рассуждение иначе, утверждая, что вместе с движением надо отсчитывать половину каждой возникающей половины, так что, пройдя все расстояние, приходится сосчитать бесконечное число, а это, по общему признанию, невозможно. В наших первых рассуждениях о движении мы разрешили [этот вопрос], исходя из того, что время заключает в себе бесконечное множество [частей]; ибо нет ничего нелепого, если в бесконечное время кто-нибудь пройдет бесконечное множество; ведь бесконечность одинаково присуща и длине и времени. Но такое решение достаточно для ответа тому, кто так поставил вопрос (спрашивалось ведь, можно ли в конечное [время] пройти или сосчитать бесконечно многое), однако для сути дела и для истины недостаточно. | ||
|