Библиотека >> Физика
Скачать 150.44 Кбайт Физика
Притом для величины это происходит с сохранением взятого, для времени и людей -- вместе с их уничтожением, так, однако, чтобы [последовательность возникновений] не прекращалась. Бесконечное путем прибавления в некотором смысле есть то же самое, что и [бесконечное] путем деления, а именно: путем прибавления с конечной величиной происходит обратное: в какой мере она при делении очевидным образом идет к бесконечности, в такой же при прибавлении она будет казаться идущей к определенной [величине]. Если, взявши от конечной величины определенную часть, прибавлять [к ней дальнейшие части, находящиеся друг к другу] в одинаковом отношении, но [только] не прибавлять повторно ту же самую часть целого, то [исходную] конечную величину нельзя будет пройти [до конца]; если же настолько увеличить отношение, чтобы прибавлять все время одну и ту же величину, то пройти можно, так как всякую конечную величину [всегда] можно исчерпать любой определенной величиной. Иным образом бесконечного нет; оно существует лишь так -- в возможности и при уменьшении (в действительности же [бесконечное] существует в том смысле, в каком мы говорим о дне и состязании), причем в возможности -- в смысле материи, и не само по себе, как [существует] конечная величина. И бесконечное путем прибавления, которое мы назвали в некотором смысле тождественным бесконечному путем деления, существует в возможности таким же образом, так как вне его всегда можно что-нибудь взять. Однако оно не превзойдет любой определенной величины, как превосходит бесконечное путем деления всякую определенную величину, меньше которой оно всегда [в конце концов] будет. Таким образом, превзойти всякую величину путем прибавления нельзя даже в возможности, если только не существует бесконечного в действительности в смысле свойства [какого-то тела], как говорят физиологи, утверждающие, что тело вне космоса, сущность которого -- воздух или что-нибудь подобное, бесконечно. Но если невозможно, чтобы таким образом существовало бесконечное в действительности чувственновоспринимаемое тело, то очевидно, что путем прибавления оно не будет бесконечным и в возможности, а только, как сказано, в обратном отношении к делению. Хотя Платон именно поэтому допустил две бесконечности: [во-первых], при увеличении, так как он полагал, что [таким образом) можно превзойти [любую величину] и идти до бесконечности, и, [во-вторых), при уменьшении, однако, допустив две, он ими не пользуется: ведь числам у него не свойственна бесконечность ни при уменьшении, так как единица -- наименьшее [число], ни при увеличении, так как числа доходят у него [только] до десяти. Выходит, что бесконечное противоположно тому, что [о нем обычно] говорят: не то, вне чего ничего нет, а то, вне чего всегда есть что-нибудь, то и есть бесконечное. Вот пример, ведь и кольца, не имеющие камня, называют бесконечными, так как всегда можно взять какую-нибудь часть, лежащую дальше, [чем предыдущая], однако так говорится по некоторому сходству, но не в собственном смысле; ибо и только что сказанное должно иметь место, и никогда нельзя брать одного и того же; в круге же это происходит не так, а только непосредственно следующее оказывается всегда другим. Итак, бесконечное есть там, где, беря некоторое количество, всегда можно взять чтонибудь за ним. А где вне ничего нет -- это законченное и целое. Ведь мы так и определяем целое: это то, у которого ничто не отсутствует; например, целое -- это человек или сундук. Но каково значение целого в частных случаях, таково и его собственное значение, а именно целое то, вне чего ничего нет, а то, у чего нечто отсутствует, будучи вне его, уже не все, как бы мало ни было это отсутствующее. Целое и законченное или совершенно тождественны друг другу, или родственны по природе: законченным не может быть не имеющее конца, конец же -- граница. Поэтому следует думать, что Парменид сказал лучше Мелисса: последний говорит, что целое бесконечно, а Парменид -- что целое "ограничено на равном расстоянии от центра" Ведь нельзя, как нитку к нитке, привязывать к Вселенной и к целому бесконечность; ведь такую важность они придают бесконечному именно потому, что оно "все объемлет" и "все заключает в себе", так как имеет некоторое сходство с целым. Но бесконечное есть материя для завершенности величины и целое только в возможности, а не в действительности; оно делимо и при уменьшении и обратном прибавлении, а целым и ограниченным (бесконечное] оказывается не само по себе, а по отношению к другому; и поскольку оно бесконечно, оно не охватывает, а охватывается. | ||
|